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Approximate calculation of the free energy of F e d  
systems with topological solitons: soliton creation energy 
of polyacetylene 

M Nakahara?, D Waxman and G Williams 
School of Mathematical and Physical Saences. The University of Sussex, Brighton 
BN19QH. Sussex. UK 

Received 11 March 1991 

Abstract. In this paper, we investigate an approximate technique for the calculation of the 
free energy of fermionic systems that are coupled to topological solitons. We apply this to 
a solvable onedimensional model field theory: plyacetylene in the static dimerization 
approximation. We estimate the free energy of solitons with various scales of spatial exten. 
sion and make comparisons with exact results. In an appendix. we make the connection 
between the high-temperature limit of our work and Ginzburg-Landau theory. 

1. Introduction 

In the many-body physics of fermions there are a number of cases where the second 
quantized Hamiltonian may be written as an operator that is bilinear in the fermion field 
operators. This happens, for example, in conventional singlet superconductors and in 
triplet Fenni supertluids where the interaction between the fermions results in a non- 
zero ‘gap’ (= order parameter) appearing. This results in the quartic interaction term 
being replaced by terms that are simultaneously bilinear in the fermionic field operators 
and linear in the order parameter. Another example, corresponding to quite a different 
situation, occurs in polyacetylene [l], where the coupling of electrons (assumed here to 
be non-interacting among themselves) and phonons (of wavenumber 2kF) leads to 
dynamic symmetry breaking in the phonon field. A non-zero order parameter results- 
the dimerization (the lattice undergoes a Peierls transition to a dimerized ground state). 
The dimerization order parameter couples to an operator bilinear in electron field 
operators. 

While there are great similarities between the mathematical descriptions of the above 
systems(apartfrom, in general, differingspace dimensionality), this doesnot necessarily 
imply that the physics is similar. Indeed, the field operators occurring in the 
superconductor/supefluid Hamiltonian act in Nambu (particle-hole and spin) space, 
while in polyacetylene the essential space is that of right- and left-moving electrons 
(travelling at the Fermi velocity). 

In this paper, we present an approximation we have developed for the free energy- 
expressed solely in terms of the appropriate order parameter, and hence generalizing 
the Ginzburg-Landanfreeenergyfor T == T,-(thetransition temperature) toanarbitrary 
t Permanent address: Physics Institute, Faculty of Liberal Arts, Shizuoka Universily, Shizuoka 422, Japan. 
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temperature. The method applies to systems involving fermions whose effective Ham- 
iltonian is bilinear in field operators and whose order parameter possesses non-trivial 
spatial dependence (for example, topological solitons or vortices). 

The approximation enables us to obtain quite reasonable estimates for the free 
energy over the full temperature range 0 to Tc. At temperatures close to TC our results 
reduce to Ginzburg-Landau theory, as we show in appendiv 2. At lower temperatures 
we find that it is very important to take into account the low-lying modes of the system. 
The most important of these are the bound states localized around the soliton, and any 
theory that omits consideration of these will make a very large error in the soliton 
creation energy. 

In order to concentrate on the essential features of our approximation and not to be 
distracted by complications associated with space dimensionality or additonal degrees 
of freedom (e.g. electromagnetic fields) or dynamics of the order parameter, we shall 
focus our attention on polyacetylene in the static dimerization approximation. Thus the 
kinetic energy of the lattice is neglected from the free energy. We shall view this as 
the simplest one-dimensional system that can support solitons and thus serve as an 
interesting application of our methods (it is also sufficiently simple that effectively 
everything is known about it 121 and hence our approximation can be quantitatively 
tested). We are aware that the Ginzburg-Landau limit (T+ Tc) is not particularly 
realistic for this system, owing to an extremely high transition temperature -104K. 
However, this is included for completeness. In other physical systems it is a region of 
considerable physical interest. 

In section 2, we integrate out the fermions and express the free energy in terms of a 
proper-time integral representation involving only the order parameter. In section 3, 
we consider the system with a single topological soliton present and describe in detail an 
approximation for the free energy. In section 4, we calculate the free energy associated 
with a soliton (for definiteness at zero temperature). Section 5 consists of a table of 
resultsand adiscussion ofvarious features of the approximation along with a comparison 
of our results with known exact results. Three appendices are included, which show the 
divergence cancellation of the free energy in the weak-coupling limit, the connection of 
the present work with Ginzburg-Landau theory and a representationof the heat kernel. 

2. Expressing the free energy in the proper-time representation 

The free energy Fof polyacetylene, relative to the free energy of a uniformly dimerized 
system Fo (with the gap A = Ao), is found, in the static dimerization approximation, 
from the ratio of Grassmann functional integrals [2] 

with 

(2.24 

(2.26) 

(2.2c) 
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where P is the reciprocal of the temperature T and z is a Euclidean time variable. A 
quantity with subscript 0 is obtained from the above by replacing A(x) by Ao. The 
dimerization field A is static in the present work; it depends only on x and not on z. In 
(2.2~) uo and g are effective spring and coupling constants for the dimerization. The 
Fermivelocityisdenoted byuFanduk(k = 1,2,3)are thepaulimatrices, whichdescribe 
the physics in the problem associated with electrons moving at 5 uF (they do not describe 
the spin, which plays an almost passive role in what follows and merely results in a factor 
of 2 appearing). 

The functional integrals can be carried out and lead to 

(2.3) 

where the power of 2 follows from the spin multiplicity. The determinants are evaluated 
oneigenfunctionsthat areantiperiodicin tover [0, PI. Asisdiscussedin[2],itispossible 
to replace Det[J, + HI by (Det[-J$ + #])'0; thus we can write 

Using the identity between determinants and traces 
InDet( . . . )=  TrIn( . . .)  

we can write 
(2.5) 

If we use the following integral representation for In(x/y), with both x and y positive 
numbers, 

(2.7) 

(which may be explicitly verified by differentiating with respect to x or y) we can write 

+H2)]-exp[-s(-8? +Ha)]} 

(2.8) 

Note that the trace Tr that appears in this equation is to be understood in the 
functional sense, i.e. 

Tr(. . .) = tr /&r C., .I(. . . ) l x ,  5 )  

where tr is the trace over the internal matrix space (which has different interpretations 
in different systems, c.f. the comments in section 1). Thus 

where w, = (Zn + 1)xT are the Matsubara frequencies that enforce antiperiodicity 
in 5. 
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We shall refer to s as the proper time and to equation (2.9) as the proper-time 
representation of the free energy. We shall also refer to the quantity 

~ ( s )  = tr dx (.xl(eTH2 - e+" x ) (2.10) I 
appearing in equation (2.9) as the integrated heat kernel. 

The integral representation of h ( A / B )  was first (to our knowledge) used in physics 
by Schwinger in a remarkable paper where he was able to carry out perturbative 
calculations in quantum electrodynamics (QED) in a gauge-invariant way [3]. Although 
it may not be manifest in what follows, our results also possess the property of gauge 
invariance and thus the method can be generalized to systems involving electromagnetic 
fields [4]. 

3. The approximation for the free energy in the one-soliton sector 

From the previous section we see that the free energy can be expressed solely in terms 
of the order parameter A, albeit as a complicated functional form. In this section we are 
going to consider the case where Frefers to the system that possesses a single topological 
soliton and Fo refers to the uniform system. We discuss an approximation scheme for 
the free energy that generalized the results of D'yakanov er a[ [5] that were used in the 
very different context of quantum chromodynamics. We obtain the results necessary to 
evaluate the free energy of a soliton of given profile but with an arbitrary scale of spatial 
variation at an arbitrary temperature. 

The proper-time representation for F - Foinvolves, interalia, ans integration of the 
heat kernel K(s )  (equation (2.10)). We introduce a partition point 6, which separates 
two different regions of the parameter s, and we introduce different approximation 
schemes for each region. (The parameter s roughly corresponds to an inverse tem- 
perature and it is sometimes useful to calls < 6 and s > 6 high- and low-energy regions 
respectively). 

The approximation we make aims to capture the essentially different behaviour of 
the heat kernel in the two regions. Thus we write 

This approximation is as follows: 
(i) In the smalls region, s < 6, the heat kernel is expanded in ascending (fractional) 

powers of s, which is called the Minakshisundaran-Seeley (MS) coefficient expansion 
[6]. The approximation to KH(s) consists of including only a finite number of terms in 
the expansion. The complexity of these terms increases rapidly with order and this 
provides a practical limit to the number of MS terms computed. 

(U) In the large s region, s > 6, the approximation for the heat kernel consists of 
including only the low-lying modes of the operator H? in the summation over the 
eigenvalues. In the present work, we include only the bound states. 

(iii) The approximation is fully specified by providing a prescription for the deter- 
mination of the partition point 6 that separates the low and high s behaviours. We note 
that the exact heat kemel is a continuous function of the proper times. In general, the 
approximations embodied in (i) and (ii) above will not lead to a continuous function of 
s at s = 6. The prescription we adopt is to select 6 such that the mismatch of the two 
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approximations at s = 6 is minimized. That is [KH(s) - KL(s)lZ takes on its minimum 
value at s = 6. (In many cases that we have considered the approximations for KH and 
KL can actually cross and hence a 6 can be found such that we obtain a continuous 
approximation to K(s ) . )  

We note that (a) when no such minimum can be found it is necessary to include a 
large number of the MS expansion and (6) when there exists more than one 6 that 
minimizes the mismatch, best results follow from taking the smaller root due to the 
improved convergence of the MS series. 

Proceeding with the calculation, we return to equation (2.9) and evaluate, in the 
approximation described above, the excess free energy F - Fo associated with the single 
soliton. We take the soliton profile to be given by 

where A0 is the uniform dimerization amplitude and A is a parameter that characterizes 
thesizeofthesoliton(itiswithhindsight that we parametrize thescaleofspatialvariation 
in this way; the free energy takes on a particularly simple form in the terms of A). 

A(x) = AD tanh(XAo/uFA) (3.2) 

From equation (2.2~) we have 
(3.34 
(3.3b) 

Introducing the partition point 6, we write the approximation soliton free energy, 
( F  - F D ) ~ ~ ~ ~ ~ ,  as 

(3.44 

Note that the effects of the finite electron bandwidth Whave been incorporated into this 
equation by putting a lower limit of 11 onto the leading integral of equation (3.4). While 
the most obvious way to implement a cut-off is to restrict momentum integrals implicit 
in the above equation, appendix B of [2] discusses a number of equivalent ways the cut- 
off can be introduced. This stems from the fact that the physics of the soliton is intrin- 
sically that of low energies and that the soliton free energy is insensitive to the precise 
method by which the high energies are cut off, and cutting off very small values of s is 
equivalent to cutting off high energies. From appendix B of [2] we have 

q =  (2e-y/2/W)2 (3.46) 
where Wis the electron bandwidth and yis Euler’sconstant. 

In appendix 1, we show that what appear to be divergences associated with the weak- 
coupling limit Ao/W+ 0 cancel between the elastic and high-energy contributions to 
the free energy. We shall, in what follows, neglect corrections to the free energy that 
are U((AD/W)”) with n 2 1. That is, we work to zeroth order in the weak-coupling 
expansion. For realistic values of Ao/W the errors caused by this truncation are beyond 
the accuracy of our approximation to the free energy and therefore are insignificant in 
the present work. 

3.1. High-energy conhibution 

Let us now determine the high-energy (small s) contribution to the heat kernel K(s) 
appearing in equation (2.10). We first obtain an exact representation for K(s) by taking 
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the configuration part of the trace in coordinate space; since @ and Po depend only of 
uz it is convenient to take the spin part of the trace in a basis in which this matrix is 
diagonal. We obtain 

(3.5a) ~ ( s )  = x J d~ (xlexp(-Oos) - exp(-Qos)Ix) 
”-+,- 

where we have gone to an operator notation ( e denote operators) 
P, = u ; p  + U” 

P = +1, -1 
(3.56) 

U ,  = (Ao/A)’[A2 - A(A + V) SeCh2(Aof /~u~) ]  
Po = u$b2 + A:. 

(3.Sc) 
(3.54 

In appendiv3 we show that equation (3%) may be written as 

K(s) = ~ ] ~ e x p ( - p 2 u $ s ) { e x p [ ( u $ a j  + 2iu$pa, - U&] - exp(-Azs)} (3.6) 

Asmallsexpansion to K(s)  isobtained by expandingthecurly bracketinequation(3.6), 
performing the integral over the momentum and then collecting together terms of the 
same powerins. The high-energy approximation to K(s) ismade bytruncating thisseries 
at a finite order. We find 

Y 

where the ak and aio) are the MS coefficients corresponding to the soliton and soliton- 
free sectors respectively, and are given by 

ao(x) - abO)(x) = 0 

1 

UF Y 

a4(x) - a$O)(x) = -2 ~ P ~ [ s ( u ;  - A D  - su;Ga:u, + u ~ u ~ ~ : u , ~ .  
On substituting for the U, and integrating over x we find that a simple form for KH(s)  is 
obtained by expressing the results in terms of the dimensionless variable t defined by 

We obtain a series in powers o f t  with dimensionless coefficients A,, which follow form 
equation (3.8): 

(3.10) 
1 

s = @/A&. (3.9) 

&(s) = K H ( ( A / A ~ ) ’ ~ )  = A&)t(k-5) 
k - I  

(3.11) 
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3.2. Low-energy contribution 

Let usnow consider the low-energypart ofthe heat kernel, KL(s). Owing to the presence 
of the soliton, the operators 9, appearing in @ have discrete bound states [l]. The 
bound-state spectra of Q, differ in that 9, has an exact zero mode whereas 8- does 
not. The non-zero bound states of Qt are E, = (A&)’ (2An - n’), where n is integral 
and [A] 2 n 1. The continua of Q2 and Q, correspond to energies >Ai.  

In our approximation we will assume that only the bound states contribute to KL(s), 
assuming that the difference in the continuum parts of the spectrum between the soliton 
and soliton-free sectors is taken into account in K&). Thus 

[AI 
K ~ ( s )  = 1 + 2 E e-Q. (3.12) 

This quantity, like KH(s), takes on a simple form when expressed in terms o f t  given in 
equation (3.9): 

n-1 

PI 
KL(s)  = KL((A/Ao)’t) = 1 + 2 2 exp[-(2An - nZ)t]. (3.13) 

* = I  

3.3. Determination of the partition point 

As noted above, the partition point is chosen in such a way that [KH(s) - KL(s)J2 is 
minimized at s = 6, i.e. 

(3.14) 

If we go to a dimensionless variable E related to 6 in the same way that tis related to 8: 

6 = (A/A0)’& (3.15) 

then there is the very significant advantage that E is independent of A,. (This is most 
easily seen by re-expressing equation (3.14) in terms of t and E . )  Since the equation 
that determines E ,  equation (3.14), in independent of w, and Ao, it follows that E is 
independent of temperature. Thus a numerical solution of equation (3.14) is sufficient 
to determine the free energy for all temperatures. In table 1 we give the dimensionless 
partition point E for a range of values of A. The approximation to the free energy is thus 

(d/b)[KH(s) - K~(s)l’I,=a = 0. 

4. The soliton creation energy 

The results of the previous section can be used to find the free energy associated with a 
soliton for arbitrary values of T and A. In order to decrease the number of parameters 
under consideration, we specialize to the case T = 0. This choice has been made only 
for definiteness and ease of comparison with existing results. The only simplification 
that occurs in this limit is that we have to contend with integrals instead of sums over the 
Matsubara frequencies. The zero-temperature limit of the soliton free energy is the 
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Table 1. The approximate soliton free energyis given for three and four m coefficients and 
for various values of the 'size' parameter A. Thesc are compared with the exact free energy, 
which can be calculated analytically at integral valuesofl. It is evident that the accuracy of 
the approximation increases with the number of Mscoefficients included. 

Three MS terms Four MS terms 
Number of Exact 

d boundstates E ( E - E o ) / A o  ( E  - Eo)/Ao ( E  - Eol/Ao 

0.2 1 
0.4 1 
0.6 1 
0.8 1 
1.0 1 
1.0 2 
2.0 2 
6.0 6 

4.677 1.292 
3.476 0.813 
2.594 0.694 
2.427 0.646 
1.493 0.650 
2.149 0.671 
0.357 0.757 
0.041 1.471 

8.375 
5.084 
3.565 
2.787 
1.596 
2.217 
0.372 
0.043 

1.156 o m  
0.802 0.694 
0.697 0.657 
0.655 0.641 
0.640 0,637 
0.644 0.637 
0.715 0.696 
1.310 1.733 

soliton creation energy and will be denoted by (E - EO)amrax. The quantity is the zero- 
temperature limit of equation (3.16). 

The steps leading to the soliton creation energy are as follows. We perform the 
integrals over w. and f in equation (3.16). Using the T = 0 uniform dimerization ampli- 
tude [1,2] 

A. = Wexp(-nuFwQ/2g2) (4.1) 
the elastic term is expressed in terms of A d W .  Finally working to zeroth order in the 
weak-coupling parameter A$W we obtain the soliton creation energy in terms of the 
'size' parameter I and the dimensionless partition point E :  

a 1 
(an2 E )  

+ -(- MI6 + h4 + A)&' f 90a 

(4.2) 

5. Results and dbcussion 

In this section we present a detailed analysis of results for our approximation for the free 
energy. We calculate the soliton creation energy (referred to in this section as the free 
energy) for various values of A with three and four MS coefficients. These are used to find 
the approximate minimum of the free energy. The approximation is also investigated 
for large values of I where there are a large number of bound states. These results are 
compared with the exact calculation of [Z]. 

In table 1 we give the approximate soliton free energy (calculated with three and 
four MS coefficients), the partition point &(A) and the exact soliton creation energy, all 
evaluated for a range of values of A. The discontinuity in (E - Ea)appmx at integer values 
of I arises since new bound states are generated as I passes through an integer. A 
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I 
0 0.5 1.0 1.5 2.0 

A 
Figure 1. The exact soliton creation energy (lower curve) and the approximate soliton 
creationenergy (upper curve) are plotted for a range of values of the‘size’ parameter A. The 
approximation for the creationenergy wasobtained when four Mscoefficientswere included 
in the calculation. The discontinuity appearing in the cwve for the approximation at A =  1 
results from a new bound state being trapped on the soliton. A smoothing out of the density 
of bound states would avoid this feature [SI. 

continuous approximation can be obtained by smoothing out the delta functions in the 
density of bound states. We have not carried out this smoothing in the present work 
since it requires detailed consideration of the low-lying scattering states; this will be 
discussed elsewhere [SI. 

While we have treated the parameter A as arbitrary, its physical value corresponds 
to the minimum of the free energy. Exact calculations [2] show that this value is unity. 
Itisinterestingtoseehowcloseourapproximationcancome tothisvalue.Theminimum 
of the approximate free energy is shallow so that the error in the value of A at the 
minimum can be much larger than the error in the approximate free energy. We find 
that for three MS coefficients the partition point discontinuously exchanges minima of 
(KH - as A passes through 0.8543, and as a consequence the approximate free 
energy has a small discontinuity at this value of A. In what appears to be a coincidence, 
this value of A also yields the free energy minimum with (E - EO)appmr = 0.6288Aowhen 
A approaches 0.8543 from below. The discontinuity in the free energy (<1%) is smaller 
than the error on the minimum value of the free energy (1.2%). This behaviour is not 
quite satisfactory; however, we find that by including four MS coefficients the free energy 
is continuous for all non-integral values of A. In particular with four MS coefficients the 
freeenergyhasasmoothminimumatl = 0.9050andachievesavalueof(E - EO)approx = 
0.6385A0, corresponding to errors on A and the free energy of 9.5% and 0.3% respect- 
ively. In figure 1 the exact soliton creation energy along with our approximation (cal- 
culated for four MS coefficients) are plotted for a range of values of A. 

It is instructive to make a comparison between the accuracy of the approximation 
and the convergence of the proper-time expansion used in the free energy. For this 
purpose let us write (E - = Z ( E  - Eo)&, where the subscript ‘high’ refers to 
the high-energy (smalls) contribution to the free energy and the superscript ‘(n)’ refers 
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Tsbk 2. The relative contributions of the successive terms to the high-energy part ol the 
approximation to the free energy are given. The accuracy of the approximation increases 
with the degree of convergence of the high-energy expansion. 

Three MS terms. 

( E  - Eo)'"'/Ao 
Number of 

,I boundstates n =  1 n = 2  n = 3  

0.2 1 -0.070 
0.4 1 -0.001 
0.6 1 0.097 
0.8 1 0.259 
1.0 1 0.311 

2.0 2 0.594 
6.0 6 1.555 

1.0 2 0.4n 

0.091 -0.034 
0.1W -0,043 
0.046 -0.033 

-0.058 -0.008 
-0,158 0.035 
-0.228 0.074 
-0.530 0.146 
-1.871 0.535 

FOWMS terms. 

( E  - Eo)'"'/Ao 
Number of 

,I boundstates n =  1 n = 2  n = 3  n = 4  

0.2 1 
0.4 I 
0.6 1 
0.8 1 
1.0 1 
1.0 2 
2.0 2 
6.0 6 

-0.033 0.164 -0,108 0.159 
0.017 0.147 -0.092 0.074 
0,158 0.064 -0.062 o m 0  
0.294 -0.066 -0.011 0.015 
0.333 -0.169 0.011 -0.010 
0.437 -0.235 0.078 -0.026 
0.620 -0.553 0.159 -0.043 
1.933 -1.939 0.575 -0.162 

to the contribution to the nth MS coefficient. In table 2 we give values for (E - Eo)&, 
for various values of I, again with three and four MS coefficients. Inspection of table 2 
shows that the accuracy of the approximation to the free energy is measured by the 
degree of convergence of the MS expansion. Best results are obtained when the ratio of 
successive terms in (E - E&,, is small, and this gives a straightforward check on the 
minimum numberofMScoefficientsnecessaryfora reasonableresult. (TheMSexpansion 
is, for general values of I, likely to be asymptotic and thus will diverge if summed to all 
orders. This situation is very similar to perturbative expansions in QED.) 

To summarize, the methods presented in this paper allow the calculation of the free 
energy for a class of fermionic systems involving extended order parameter structures 
(solitons). The method works to a good accuracy over the entire temperature range 0 to 
Tc. Thus even at low temperatures where highly non-local quantum effects are present 
and no simple free energy functional (e.g. of a Ginzburg-Landau type) exists, the 
method is able to produce results of good accuracy. The method presented is quite 
general in that the MS series is straightforward to obtain irrespective of dimensionality 
and the complexity of the Hamiltonian. Furthermore, even in cases where the bound 
states cannot be calculated exactly, there are many techniques for their approximate 
calculation. 
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Having tested the method in an exactly solvable model problem we plan, elsewhere, 
to apply it to more complex systems. 
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Appendix 1. Divergence cancellation 

In this appendix, we show that divergences associated with the extreme weak-coupling 
limit, Ao/W* 0, cancel between the electronic and elastic piecesof the free energy. We 
find it convenient to incorporate the bandwidth cut-off, w ,  in the frequency sum instead 
of the proper time integral (see appendix B of [2]). Thus the frequency sums run up to 
N where N is given by W = 2nT(2N * 1) and the lower limit of the proper time integral 
is set to zero. From equatbns (3.10) and (3.16), it is straightforward to see that if 
O(((Ao/W)"), n 3 1, contributions are neglected then the only dependence on Ao/W 
in the electronic part of the free energy comes from the first term of the MS expansion. 
Also the elastic part of the free energy retains a dependence on Ao/W, through the 
uniform dimerization equation 

(Al.1) 

This equation is a trivial generalization of the zero-temperature result obtained in [2]. 
Combining these two contributions, we have 

N 

T E exp[-(kw,/Ao)2~A,51fi -- "Fw%Ao. (A1.2) 2 
IntegratingoversandsubstitutingforA,,equation(3.11), we lindthat equation (A1.2) 
becomes 

(A1.3) 

As N tends to infinity, the divergences in the two terms in equation (A.3) cancel. A 
consequence of this is that in the weak coupling limit, Ao/W 4 1, (F - &)/Ao may be 
accurately approximated by working to zeroth order in Ao/W. 

Appendix 2. Ginzburg-Landau analysis 

In this appendiw, we present the high-temperature (T* Tc) Ginzburg-Landau limit for 
the free energy. The closest connection to the derivation given in this appendix is with 
the work of Schakel[7]. 

The Ginzburg-Landau form for the free energy arises, in the language of proper- 
time integrals, only from small s. This has the consequence that any low-energy modes 
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(e.g. hound states) make a negligible contribution to the free energy. Thus only the MS 
coefficients in the high-energy piece KH(s) and the elastic term significantly contribute 
to the free energy, resulting in a free energy that is a simple functional of the order 
parameter. (This is in sharp contrast to the case of low temperatures where the low-lying 
spectrum and hence the form of the free energy depend in a highly non-trivial way on 
the profile of the order parameter.) 

The fact that only the smalls region contributes to the free energy arises from the 
following rather general observation: the partition point 6 appearing in equation (3.4a) 
has the dimensions of (energy)-2. From the definition of 6 it foUows that it does 
not depend explicitly on temperature. There is then effectively only one energy scale 
available for it to dependupon, namely Ao. Consequently SAiisO(1) for all temperatures 
T <  Tc. Thus, 6 - A i Z  becomes very large for T=Z Tc and the factor exp(-wis) in 
equation (3.4a) exponentially suppresses s > 6 contributions to the free energy. It 
follows that it is agood approximation to replace 6 by infinity in equation ( 3 . 4 ~ ) .  Thus 
we have for T=Z Tc (again we put the cut-off in the frequency sum, see appendix 1) 

(A2.1) 

Using the results of equations (3.9) and (3.10) we can write 

1 1  N N d r  
2T -e-o$lH(s)=  T x  - ( - / 1 2 ( A 2  - A i )  

n = O  s n = O U F  O n  

+ 7 dx [A4 + (uFa,A)* - Ai]) .  
2w. ' J  ( A 2 4  

The fust sum above depends logarithmically on N and hence the cut-off W .  It is 
adequate (since N ?z- 1) to use 

(A2.3) 

where we have recalled that (2N + 1)nT = W/2 and y is Euler's constant. 

approximation of taking its upper l i t  to be infinity. Hence 
The second sum in equation (A2.2) is highly convergent and we make the excellent 

x dx [A4 + u : ( ~ , A ) ~  - A i ]  + O(T-') ('42.4) 

where <(r)  is Riemann's f-function. Provided we are close enough to T, and spatial 
variations of A(x) are smooth we can neglect the 0(T4) corrections. Substituting for 
( a ,  - ui0))  and (a2 - aio)) from equation (3.8), and setting T =  Tcin the coefficient of 
(az  - aio)), we find 
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where we have defined the critical temperature Tc as the temperature at which the 
coefficient of A'vanishes. It is determined from 

In this way we obtain the Ginzburg-Landau free energy functional with the uniform 
bulk free energysubtracted. Ifthe unsubtracted free energyisrequired, then A. may be 
set to zero in equation (A2.5). 

Let us note several points: 
(i)The Ginzburg-Landaufreeenergyisasimplefunctional(i.e. anintegralofalocal 

free energy density) of the order parameter. This is in sharp contrast to the case of low 
temperatures; the low-lying spectrum depends in a highly non-trivial way on the profile 
of the order parameter and in general we would exect an extremely complicated free 
energy functional. 

(U) The ratio of successive terms in the Ginzburg-Landau free energy is O((A/T)Z). 
This makes it clear that it cannot be straightforwardly extended to low temperatures and 
detailed considerations such as those given in the main body of this work are necessary. 

Appendix 3. Representation of the heat kernel 

In this appendix we derive a representation for the heat kernel that has a natural 
expansion in powers of the proper-time variables. Let us consider the quantity 

(A3.1) A ( X , X ' ; S )  = (xIexp[-s(u?p* + uu)llx'). 
Thus 

- J S A ( x , x ' ; s ) =  (-U@; + U,)A(X,X';S).  (A3.2) 

Integrating this equation gives 

A(x,x ' ;s )  = exp[-s(-uCaf + U,)]A(x ,x ' ;O) .  (A3.3) 

Noting that 

and using the identity 
a, eb(x-x') eb(x-x')(a + ip) 

we can write equation (A3.3) as 

(A3.4) 

(A3.5) 

~ ( x , x ' ; s )  = / z e b + x * )  exp{-s[-u?(a, +ip)Z + U,]}. 

Thus 

I dx(xlexp[-s(uZFlj* + U,)]lx) = l y e x p ( - p Z u : s )  exp[(u:a: + 2iu$pax - U,)s].  

(A3.7) 

Finally we note that if U, in this equation is replaced by Ai,  which is independent of x ,  

643.6) 
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then the derivatives in the exponent have nothing to act upon and may be omitted. It 
then follows that 

I dr ( X I  exp[-s(u$’ + U , ) l -  exp[-s(u$p’ + A;)] [x )  

= I ~ e x p ( - p ’ u : E ) { ~ x p [ ( u $ a :  + 2iu$pa, - U,)s]  - exp(-Aas)) 

(A3.8) 
which is essentially equation (3.6). 
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